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NOMENCLATURE 

exponent: 
constant; 
exponent ; 
constant; 
mass concentration ; 
mass concentration at the surface of the porous 
plate; 
width of nozzle (PWJ): diameter of nozzle 

(RWJ); 
constant; 
non-dimensional stream function; 
non-dimensional concentration; 
exchange coefficient ; 
mean velocity in the direction of flow; 
maximum velocity (wall Jet); 
nozzle exit velocity ; 
mean velocity in the transverse direction ; 
longitudinal coordinate ; 

boundary layer thickness (for wall jets 6 is the 
height at which u = U,/2); 
concentration boundary layer thickness: 
height at which u = U,; 
similarity parameter (y/6); 
value of 1 at which u = U,,,; 
similarity parameter ()‘/a,); 
turbulent fluctuations in a, L’ and c; 
density ; 
kinematic viscosity ; 
wall shear stress; 
shear stress ; 
diffusivity of momentum (turbulent); 
diffusivity of mass (turbulent); 
Reynolds number at nozzle exit = (i&/v ; 
turbulent Schmidt number, 

I. INTRODUCTION 

distance of leading edge of porous plate from the THE PROCESS of mass transfer from saturated porous surfaces 
virtual origin ; exposed to turbulent air streams finds many practical appli- 
transverse coordinate; cations. In many cases, the air stream will be in the form of a 
height of nozzle above flat plate--radial wall jet; wall jet over the porous surface. The aerodynamics of both 
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FIG. l(a). Two-dimensional plane wall jet 
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FIG. l(b). Radial wall jet. 

FIG. 1. Schematic representation of the plane and the radial wall jets with mass transfer. 

plane and radial wall jets have been investigated in detail and 
a vast amount of literature is available on the subject [l-3]. 
On the other hand, mass transfer studies in turbulent wall jets 
are meagre. Mass transfer in both plane and radial wall jets, as 
shown schematically in Fig. 1, is considered herewith. ‘Simi- 
larity solutions’ to the governing equations are obtained and 
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FIG. 2. Non-dimensional velocity profile. Two-dimensional 
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plane wall jet. The stream function at any section x is then : 

experimental evidence is presented which indicates that the 
concentration profiles are also self-preserving. 

2. THEORETICALANALYSIS 

The governing equations for the flow under consideration 
(with reference to Fig. 1) are: 

Continuity 2 (ax’) + $ (rxj) = 0 
8X 

(1) 

Momentum 
au au a 7 u--+t’_=_ - 
dX 0 3Y FY P 

(2) 

Conservation 
ac a~ 

a&+v-= -$(m, 
aY _J 

(3) 

where 

j = 1, for the radial wall jet 

j = 0, for the plane wall jet 

and 

Considering the momentum equation first, we seek a 
similarity solution for it by introducing the following: 

1. Power law variation for the wall jet thickness 6 and the 
maximum velocity U, at any section given by UM = 
Ax”, 6 = Bxb, x being measured from a ‘virtual origin’. 

2. A similarity parameter n = y/6 = y/Bxb 
3. The self-preserving velocity profile u/UM =f(n) 
4. Representation of the shear stress as 

r 
-z -u’v’ = - U$l,(n). 
P 

The continuity equation is eliminated by introducing the 
stream function + such that 
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I) = 1; uu’dy = ABx”+h+j [‘l.f(q)dq = ABXa+*+‘F(q). 
-0 

With these substitutions the momentum equation (2) turns 
out as 

AZaxZ”~‘F”_AL(a+b+j)xZ”-lFF’r = _ _ ~~“~~h’,, 
B 

(4) 

where, the primes designate differentiation with respect to q. 
The dimensional homogeneity of equation (4) implies that 
b = I both for the plane wall jet and the radial wall jet. 

Consider now the momentum integral equation for these 
flows. This can be written as 

d ’ 
~ i u~x’d~+:%j=O 
dx.o P 

or on integration with respect to I, 

i’ 
u’x’d~ + 

-0 1 
-ITo 

-x’dx = constant. (5) 
.o P 

It is now necessary to assume that the viscous dissipation 
term in the momentum integral equation is small compared 
to the total momentum of the jet. This assumption may be 
justified on the ground that the minimum value of the ratio of 
total momentum in the jet to the viscous dissipation at the 
wall as calculated from the experimentally measured profiles 
is of the order of 25 : 1 for the plane wall jet and 40 : I for the 
radial wall jet indicating a slow rate of momentum decay in 
wall jets [S]. Then equation (5) becomes 

i 

Ir 
uzxj dy = constant 

-0 

r 

J- 
,QBX2u+b+j F2 dn = constant. (6) 

,a 

The dimensional homogeneity of equation (6) implies a = 
- f for the plane wall jet and a = - 1 for the radial wall jet. It 
may be mentioned that the values of a and b thus obtained are 
in good agreement with those obtained from experimental 
data of other investigators [4]. 

With these values of a and b, the momentum equation 
reduces to 

FSz + FF” _ (2;i)h;. (7) 

Next, consider the mass conservation equation. Here we 
may anticipate similarity of concentration profiles with 
respect to another parameter [ defined by 

where, E is a constant. Following the method used to 
transform the momentum equation we write the self preserv- 
ing concentration profile as 

c/co = G(i) 

and 

& - z c’c’ = (i,&(i) 

where, ca is the concentration of vapour along the surface of 
theplate(taken to beconstant). Theintroductionoftheseinto 
the mass conservation equation results in 

FG* h; 

(2 -j) B 
(8) 

where * designates differentiation with respect to [, It can be 

easily shown that for a fixed value of .x0. the above equation 
can also be written as 

FG’ h; 

(2-j) B 
(9) 

the primes, as before, denoting differentiation with respect to 

‘I, 

Before, this set ofnon-linear ordinary differential equations 
(7) and (9) can be solved, a particular turbulent diffusion 
hypothesis has to be selected to connect h, and h, with F, G 
and their derivatives. There are many empirical hypothesis of 
turbulent transport none of which, however, is entirely 
satisfactory. For purposes of illustration, we choose the 
‘constant exchange coefficient’hypothesis (Prandtl) and write 

and 

Substituting relations (10) and (1 l), equations (7) and (9) turn 
out as 

(2 - j)& G” + FG’ = 0. 
r 

(12) 

(13) 

It is not possible to have a closed form solution of this set of 
non-linear ordinary differential equations with conditions 
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FIG. 3. Non-dimensional velocity profile. Radial wall jet. 
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FIG. 4. Non-dimensional concentration profile. Plane wall FIG. 5. Non-dimensional concentration distribution. Radial 
jet. wall jet. 

specified at two boundaries. Therefore, a numerical solution 
was obtained using the Runge-Kutta method. 

Equations (12) and (13) can be written as 

F”’ = f (FF” + F”) (14) 

G” = FFG’ = f FG’ (assuming SC, = 1) (15) 

where i. = constant. 
The momentum equation is independent of the mass 

conservation equation and can be solved by itself. In solving 
the momentum equation, the numerical integration was 
started by assuming F = F’ = 0 at q = 0 (wall). Equating F(O) 
= 0, implies v = 0 at the wall. This is approximately true in 
the present case as the evaporation rates were very small. 
Typical values of t&‘(O) and c,, were lo-“ g cmm2 s and 20 x 
lo-“ g cmm3 giving value of v = 0.05 cm s-l at the wall. The 
values of 1. and F”(0) were arrived at by trial and error to 
obtain the best fit of the computed curve of F’ vs q with the 
experimental curve. The value of i. had to be changed in the 
outer layer again. For the plane wall jet, the values of 1. 
selected were -0.011 in the inner layer and -0.41 in the outer 
layer. The corresponding values for the radial wall jet were 
-0.0158 and -0.36 respectively. These values of i. were then 
used in the integration of the mass conservation equation. 

3. EXPERIMENTAL WORK 

Two test rigs were fabricated ; one for the plane wall jet and 
the other for the radial wall jet to simulate what is indicated in 
Figs. l(a) and (b). 

Smooth, homogeneously porous grade B ‘Porosint’ plates 
were used to evaporate methanol in the fully developed 
regions of the two turbulent wall jets. The concentrations of 
methanol at different distances and at different heights above 
the porous plates were measured by a gas chromatograph. 

Mean velocity measurements in the wall jets were recorded 
by a narrow pilot tube coupled to a projection manometer. 
The fully developed mean velocity profiles in both cases 
exhibited ‘similarity’ and conformed quite closely to those 
given in literature. 

Details of the experimental work can be found in [5]. 
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4. RESULTS 

The ‘similar’ velocity profiles of the plane wall jet and the 
radial wall jet are shown in Figs. 2 and 3. The computed 
profiles obtained by numerical integration of equation (12) 
are also indicated. The agreement between the computed 
profiles and the measured profiles is poor in the inner layer 
(between y = 0 and y = 6,) and improves in the outer region 
(_v r 6,). This is mainly due to the poor representation of 
eddy viscosity near the wall by the constant exchange 
coefficient hypothesis. 

Figures 4 and 5 show the measured and the computed 
non-dimensional concentration profiles in the plane wall jet 
and the radial wall jet respectively. The agreement between 
the two is reasonably good considering the crude hypo- 
thesis of turbulent transport assumed. It can be seen that 
the concentration profiles at different sections do exhibit 
‘similarity’ in both cases with respect to the similarity 
parameter [ as defined. 
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